Dispensable presequence for cellular localization and function of mitochondrial malate dehydrogenase from Saccharomyces cerevisiae.
نویسندگان
چکیده
The nucleotide sequence corresponding to codons for the 17-amino acid residues in the presumed targeting presequence for yeast mitochondrial malate dehydrogenase was removed by oligonucleotide-directed mutagenesis of the isolated gene (MDH1). Integrative transformation was used to insert the "leaderless" gene (mdhl-) into the MDH1 chromosomal locus of a strain containing a disrupted MDH1 gene. Expression of the mature form of malate dehydrogenase as a primary translation product was verified by demonstrating that the mature form is synthesized in mdhl- cells at the same rate as the precursor form in MDH1 cells in the presence of carbonyl cyanide m-chlorophenylhydrazone and by comparison of in vitro translation products of RNAs from mdhl- and MDH1 cells. Expression of mdhl- restores total cellular malate dehydrogenase activity to levels comparable to those in wild type cells and reverses the phenotype associated with strains containing MDH1 disruptions by restoring wild type rates of growth in media containing acetate as a carbon source. Immunochemical analyses and enzyme assays show comparable levels of malate dehydrogenase in the matrix fractions from mitochondria isolated from mdhl- and MDH1 cells and give no evidence for accumulation of the mature enzyme in the cytosol of mdhl- cells. These results indicate that the presequence for malate dehydrogenase is not essential for efficient mitochondrial localization or function in yeast.
منابع مشابه
Expression and function of a mislocalized form of peroxisomal malate dehydrogenase (MDH3) in yeast.
The malate dehydrogenase isozyme MDH3 of Saccharomyces cerevisiae was found to be localized to peroxisomes by cellular fractionation and density gradient centrifugation. However, unlike other yeast peroxisomal enzymes that function in the glyoxylate pathway, MDH3 was found to be refractory to catabolite inactivation, i.e. to rapid inactivation and degradation following glucose addition. To exam...
متن کاملIsolation and expression of the gene encoding yeast mitochondrial malate dehydrogenase.
The mitochondrial tricarboxylic acid cycle enzyme malate dehydrogenase was purified from Saccharomyces cerevisiae, and an antibody to the purified enzyme was obtained in rabbits. Immunoscreening of a yeast genomic DNA library cloned into a lambda gt11 expression vector with anti-malate dehydrogenase immunoglobulin G resulted in identification of a lambda recombinant encoding an immunoreactive b...
متن کاملAlternative Splicing Regulates Targeting of Malate Dehydrogenase in Yarrowia lipolytica
Alternative pre-mRNA splicing is a major mechanism contributing to the proteome complexity of most eukaryotes, especially mammals. In less complex organisms, such as yeasts, the numbers of genes that contain introns are low and cases of alternative splicing (AS) with functional implications are rare. We report the first case of AS with functional consequences in the yeast Yarrowia lipolytica. T...
متن کاملA yeast mitochondrial presequence functions as a signal for targeting to plant mitochondria in vivo.
To date, the presequence of the mitochondrial beta-subunit of ATPase from tobacco is the only signal sequence that has been shown to target a foreign protein into plant mitochondria in vivo. Here we report that the presequence of a yeast mitochondrial protein directs bacterial beta-glucuronidase (GUS) specifically into the mitochondrial compartment of transgenic tobacco plants. Fusions between ...
متن کاملCisplatin cytotoxicity is dependent on mitochondrial respiration in Saccharomyces cerevisiae
Objective(s): To understand the role of mitochondrial respiration in cisplatin sensitivity, we have employed wild-type and mitochondrial DNA depleted Rho0 yeast cells. Materials and Methods: Wild type and Rho0 yeast cultured in fermentable and non-fermentable sugar containing media, were studied for their sensitivity against cisplatin by monitoring growth curves, oxygen consumption, pH changes ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of biological chemistry
دوره 264 20 شماره
صفحات -
تاریخ انتشار 1989